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Role of boundary conditions in the annihilation of nematic point defects

G. Guidone Peroli and E. G. Virga
Istituto Nazionale di Fisica della Materia, Dipartimento di Matematica, Universita` di Pavia, via Ferrata 1, 27100 Pavia, Italy

~Received 11 August 1998!

We describe the effect of boundary conditions on the motion of point defects in a nematic liquid crystal
confined within a capillary tube. In particular, we show how even a small tilt of the director on the lateral
boundary could considerably affect the dynamics of defects. In our model the hydrodynamic flow induced by
the director rotation, often called thebackflow, is systematically neglected. We also suggest describing the
backflow by introducing phenomenologically an effective rotational viscosity depending on the distance be-
tween the defects@S1063-651X~99!07102-0#

PACS number~s!: 61.30.Jf
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I. INTRODUCTION

In the classical continuum theory for nematic liquid cry
tals, which presumes the same degree of order to be
scribed everywhere, point defects are mathematically m
eled as points of discontinuity for the director field

n:B→S2, ~1!

which describes the average direction of the molecules in
regionB occupied in space by a material sample. HereS2

denotes the unit sphere.
A point defect can be assigned atopological charge, as

illustrated, for example, in@1# and @2#: it roughly corre-
sponds to the number of times the director wraps around
unit sphere when a whole region around the defect
spanned. It is a common experience to see two defects
opposite topological charges that attract each other as
as the distance between them is sufficiently short.

The problem of modeling this dynamical process is n
the easiest one. In principle, one should rely on the c
tinuum equations for both the flow and the director moti
first proposed by Ericksen and Leslie~see@3# and@4#!. Their
solution, however, is likely not to be found analytically whe
defects are present.

In @5# we proposed a different way of attacking this pro
lem. In considering a point defect inside a capillary tube,
renounced finding the exact minimizer for the energy fu
tional describing the elastic distortion around a prescrib
point defect; rather, to mimic a singularity, we introduced
class of director fields depending on a single scalar funct
Such fields are built by appropriatelyjoining together the
regular solutions escaped in opposite directions, found in
pendently by Cladis and Kle´man@6# and Meyer@7#. Luckily
enough, within this class of director fields the elastic ene
can be minimized explicitly: this leads to prototypes for bo
11 and21 point defects inside a capillary tube enforcin
the homeotropic anchoring forn on the lateral boundary
These prototypes are sufficiently versatile to describe a v
ety of configurations with two or more defects alternating
topological charge. We did not confine our attention to s
ics: by resorting to an appropriate dissipation principle,
also arrived at a genuine dynamical model, where defects
considered like particles in a dynamical system~see@8# and
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@9# for a deterministic study and@10# for a statistical one!.
Thus, in @5# we succeeded in describing the coalescence
two point defects with opposite topological charges. We p
dicted a finite cutoff distancedc for the interaction between
two defects, which has recently been confirmed by sev
numerical simulations based on an independent model@11#.
For homeotropic anchoring,dc is slightly larger than the cyl-
inder diameter.

Though this model captures the essence of a dynam
phenomenon whose detailed description has long been l
ing, recent observations suggest that it should be extende
adhere better to a more complex reality. As reported in@14#,
there is enough experimental evidence to hold that when
distance between two defects with opposite topologi
charges exceedsdc , they approach each other at a consta
speed, thus revealing a constantcapillary pressurethat acts
on them before they start interacting. We showed in@14#
how a slight misalignment of the nematic director at t
boundary of the cylinder can be responsible for such a p
sure. If the anchoring fails to be homeotropic, the distancedc
also depends on the actual anchoring, which in cylindri
symmetry is completely described by the anchoring po
angle. Our model for the annihilation of two point defec
needs to be extended, since in general the boundary co
tions are also likely to affect their relative motion when t
defects come closer than the distancedc . Besides this dis-
tance, the interaction force itself should also depend on
anchoring angle.

Here we illustrate a model for the interaction between t
defects which move along the axis of a capillary tube,
whose boundary the anchoring fails to be homeotropic. S
a failure could possibly be induced by the filling process
an extent directly related to the filling velocity. Our develo
ment parallels the one in@5# for the homeotropic anchoring
We still renounce solving the complete equations of nem
todynamics: in Sec. II we introduce an appropriate class
fields which mimic again both a11 and a21 point defect,
while obeying the new boundary condition. We then min
mize the elastic free energy within this special class, th
obtaining analytically a family of director fields that mod
two point defects at every prescribed distance. In Sec. III,
compute from the elastic free energy the interaction fo
between the defects. In Sec. IV we arrive at the equation
governs their motion, by only accounting for the energy d
3027 ©1999 The American Physical Society



3028 PRE 59G. GUIDONE PEROLI AND E. G. VIRGA
FIG. 1. ~a! and ~b! illustrate the fieldsn2 andn1 , respectively;~c! and ~d! illustrate a11 and a21 defect, respectively.
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sipated in the rearrangment of the director field. In fact, h
the hydrodynamic flow induced by the rotation of the dire
tor, often called thebackflow, is systematically neglected. I
Sec. V, we discuss this assumption. Since, as shown in
@12# and @13#, the backflow can effectively be described b
reducing the rotational viscosity in the director motion, w
explore the consequences on the annihilation process o
effective rotational viscosity depending on the distance
tween the defects. We show that this indeed contributes
finer analysis of the phenomenon.

II. MODEL FOR A POINT DEFECT

In this section we give a brief description of the extend
model referred to in the Introduction: we first describe a cl
of fields which serve as prototypes for both11 and 21
defects in the director orientation, we then find the field t
minimizes the elastic free energy within this class, and
finally compute this minimum.

Hereafter we shall regard the capillary tube as a cylin
with radius R and height 2H, and we will only consider
axisymmetric fieldsn inside it, which in cylindrical coordi-
nates (r ,q,z) can be written as

n~r ,q,z!5cosw~r ,z!er1sinw~r ,z!ez , ~2!

where er and ez are unit vectors in the coordinate fram
(er ,eq ,ez). We assume thatn is subject to the following
boundary condition:

w~R,z!5w0 , 2
p

2
,w0,

p

2
, ~3!

which reduces to thehomeotropicanchoring whenw050.
Here we are interested in studying the coalescence of
defects with opposite topological charges when the bound
condition fails to be homeotropic. Actually, Eq.~3! requires
the anglew to be constant alongz and independent of time,
condition which is compatible with theconical anchoring.
This is a degenerate anchoring, where only the angle
tween the normal to the cylinder and the nematic directo
prescribed. Combining this condition and the axisymme
presumed in Eq.~2! allows n to take only two symmetric
orientations on the anchoring cone, which differ by the s
of w0 in Eq. ~3!. Here we takew0 to be positive. We shal
soon see that reversing the sign ofw0 has essentially no
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effect. We imagine that in filling the capillary tube one
these orientations is preferred to the other, possibly depe
ing on the direction of filling.

Consider now the problem of finding a fieldn as in Eq.
~2! which obeys Eq.~3! and minimizes the elastic free en
ergyE stored in the cylinder. In the one-constant approxim
tion, this energy has a density per unit volume given by

sª
K

2
u¹ nu2, ~4!

whereK is a positive modulus. It is shown in@15# that, for
2p/2,w0,p/2, there are exactly two stationary points f
E, which we calln2 andn1 , obtained by inserting into Eq
~2! the following expressions forw:

w2~r ,z!5arcsinS R2 cos2w02~12sinw0!2r 2

R2 cos2w01~12sinw0!2r 2D ~5!

and

w1~r ,z!52arcsinS R2 cos2w02~11sinw0!2r 2

R2 cos2w01~11sinw0!2r 2D . ~6!

Figures 1~a! and 1~b! illustraten2 andn1 , respectively, for
w0.0. Simple computations show thatn2 is the absolute
minimizer for the elastic free energy, while more labor
required ~cf. @15#! to prove thatn1 is a local minimizer.
Notice that for the homeotropic anchoring, bothn2 andn1

reduce to one and the same field, which is often referred t
the escaped fieldsince it was discovered by Cladis and Kl´-
man @6# and Meyer@7# in the early 1970s. As soon asw0 is
different from zero, the equilibrium solution splits into tw
different fields, which store different elastic energies. Th
also are qualitatively different: in one field the director e
capes in the same direction as the boundary data, while in
other field it escapes in the opposite direction, turning by
angle larger thanp/2.

We construct a class of fields that bear either a11 or a
21 defect, elaborating on the idea that such defects ap
when a field that escapes upwards along the axis joins
other which escapes downwards, orvice versa. This junction
is performed through two axisymmetric free surfaces, wh
we call thejoints, as illustrated in Fig. 1~c! for a 11 defect.
Notice that forw0,0 the prototype for a11 defect would be
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FIG. 2. Sketch of the director field during the interaction between two defects of opposite topological charge.
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described by Fig. 1~c! reversed upside down. Moreover,
21 defect can also be modeled by joining together the fie
in Figs. 1~a! and 1~b!, with the latter on top of the forme
@see Fig. 1~d!#.

In Fig. 1~c! an escaped field is rescaled on each sec
orthogonal to the axis of the cylinder, so thatw5w0 on the
joints; moreover, in the peripheral region between the joi
and the lateral boundary of the tube, the director field
constant on each section with constantq. The free surfaces
meet at a point along the axis, which is a singular point
n: it is either a11 or a21 defect depending on whether th
his

o
ue
n-
s

n

s
s

r

field pointing upwards occurs above or below it. Hereaft
we focus attention on a11 defect, since every result vali
for it can easily be rephrased for a21 defect.

Let h1 andh2 be the unknown heights of the joints and l
r 5r 1(z) and r 5r 2(z) be the unknown functions that de
scribe their longitudinal section. We calln1 and n2 the di-
rector fields just described in words, which in Fig. 1~c! are
shown above and below the defect. They are determin
respectively, by giving the functionw in Eq. ~2! the follow-
ing forms:
w1~r ,z!5H arcsinS r 1
2 cos2 w02~12sinw0!2r 2

r 1
2 cos2 w01~12sinw0!2r 2D , 0<r<r 1~z!,

w0 , r 1~z!<r<R,

~7!

w2~r ,z!5H arcsinS ~11sinw0!2r 22r 2
2 cos2 w0

r 2
2 cos2 w01~11sinw0!2r 2D , 0<r<r 2~z!,

w0 , r 2~z!<r<R.

~8!
cts
lin-

-
cts
We do not dwell further on the mathematical details of t
model, which could easily be retraced in@15#, where another
application is considered. We only note that the problem
finding the joints with the minimum energy has a uniq
solution, provided that their heights obey the following i
equalities:

h1<
AA~w0!p

cosw0
R and h2<

AA~2w0!p

cosw0
R, ~9!

where
f
A~w0!ª

11sinw0

12sinw0
$2 ln 22122 ln~11sinw0!1sinw0%.

~10!

III. INTERACTION FORCE

Our purpose in this section is to describe how two defe
with opposite topological charges interact. Consider a cy
der with a prescribed anchoring anglew0 on its lateral
boundary and with height 2H sufficiently large to accommo
date two defects together with their joints. Let two defe
with topological charges11 and21 be on the axis of the
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cylinder, and let the fieldn1 described in Sec. II be in the
region between them. Since by the second inequality in~9!
the maximum height of the inner joints in Fig. 2 is bounde
the distortions associated with the defects would not inter
with one another as long as the distanced between these
remains larger than

dcª2
AA~2w0!p

cosw0
R. ~11!

Thus, a strip with the equilibrium fieldn1 lies between the
inner joints. Bringing the defects closer to one another th
implies rearranging the director fieldn so that this strip is
shortened: the two joints come closer, rigidly sliding alo
the tube, while the regions away from the defects, whern
5n2 , become larger. As shown in@14#, no interaction be-
tween the defects is responsible for this motion: it resu
from two independent motions, each due to a constant fo

When d,dc the height of both inner joints in Fig. 2 i
d/2. The equilibrium distortion forn is shown in Fig. 2~c!.
To compute the elastic free energy stored in the whole
inder, we first evaluate the energy of the inner joints, wh
enclose a rescaled fieldn1 , then the energy of the oute
joints, which embrace a rescaled fieldn2 , and finally the
energy of the regions near the ends of the cylinder, wheren2

need not be rescaled. Details of such computations are g
in @15#; here we only report the final expression for the to
elastic free energyE as a function ofd:

E~d!5pKH 4 sinw01cos2 w0S 12 ln
d

dc
D J d1E~0!

for d<dc , ~12!

where

E~0!52pK$cosw0AA~w0!pR1HB~w0!%

with

B~w0!ª2~12sinw0!.

The forcef (d) acting on each defect is defined by

f ~d!ª2E8~d!, ~13!

where a prime now denotes differentiation with respect tod.
It readily follows for Eq.~12! that

f ~d!52pKH 4 sinw02cos2w0 ln
d

dc
J for d<dc .

~14!

A glance at Eq.~11! would suffice to remind the reader th
heredc depends onw0 : it is a decreasing function define
for 0<w0<p/2, which atw050 equals the critical distanc
for the homeotropic anchoring, slightly above 2.2R, and
tends approximately to 1.7R for w0→p/2. This limiting case
deserves notice: the director fieldn tends indeed to becom
uniform around the defects, apart from a whole singu
straight string linking them, while the joints fade away a
the tension in the string approaches 2pK. We refer the
reader to@15# for further details on this.
,
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The graph of the dimensionless functionDEª(E(d)
2E(0)…/pKR against the dimensionless distance betwe
the defectsdªd/2R is plotted in Figs. 3~a! and 3~b! for w0
51° andw055°, respectively.

IV. DYNAMICS

Here we derive the equation of motion that governs
coalescence between two defects with opposite topolog
charges. The classical theory for nematic flow has rece
been rebuilt by Leslie@16# on a dissipation principle, which
takes the following form when the hydrodynamic flow
negligible:

Ė1W50; ~15!

here a superimposed dot denotes the time derivative anW
represents the energy dissipated by the viscous torques
ing on the directorn. Since the molecular inertia is negl
gible, no account is taken in Eq.~15! for the kinetic energy
involved in the motion of the director field.

In applying Eq.~15! to the present case, we assume th
the configurations traversed by the director field during
coalescence of the defects are the equilibrium configurat
described above. Thus, once the dissipation functionW is
known as a function of the distanced between the defects
and its time derivative, Eq.~15! becomes a first-order differ
ential equation ford. We skip again the technical aspects

FIG. 3. The graph of the dimensionless functionDE against the
dimensionless distance between the defectd for w051°, 2nd w0

55°, respectively.
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this computation, referring the reader to@15#, whereW was
computed for a setting that formally differs from this only b
the sign ofw0 : here the appropriate formula forW is

W5
1

2
p3/2g1R cosw0H lAA~2w0!

d

dc
1AA~w0!J ḋ2

for d,dc , ~16!

whereg1.0 is the rotational viscosity~cf., e.g., Chap. 5 of
@17#! andl.1.445 is a dimensionless parameter which h
been computed numerically, precisely as in@5#.

We are now in a position to write the equation of moti
for the defects. Inserting Eqs.~12! and~16! into Eq.~15!, we
arrive at

ḋ

2R
52

1

t

4 sinw02cos2w0 ln
d

dc

Ap cosw0HAA~2w0!l
d

dc
1AA~w0!J

for d,dc , ~17!

where tªg1R2/K is a characteristic time, which also de
pends on the capillary radius. We can obtain from Eq.~17!
the timet as a function ofd:

t~d!5ta2
t

2R

3E
0

d
Ap cos2w0HAA~2w0!l

x

dc
1AA~w0!J

4 sinw02cos2w0 ln
x

dc

dx,

d,dc , ~18!

where taªt(0) represents theannihilation time, which de-
pends on the initial distancedi :

ta5
t

2RE0

dc
Ap cos2w0HAA~2w0!l

x

dc
1AA~w0!J

4 sinw02cos2w0 ln
x

dc

dx

1
Ap@AA~2w0!1AA~w0!#

4 tanw0
~di2dc!. ~19!

We obtain from Eq.~18! the graph of the dimensionles
distanced against the dimensionless time to annihilati
(ta2t)/t. In Fig. 4 this graph is drawn for bothw051° and
w055° together with the one borrowed from@5#, which cor-
responds to the homeotropic anchoring (w050°). A dashed
line illustrates the linear decay of the distance in time, wh
lasts until the interaction starts, that is, as long asd exceeds
the critical distancedc . We also see from Fig. 4 thatdc
depends onw0 and that the phenomenon becomes faste
this angle increases.
s

h

s

V. DISCUSSION

One might well argue that the phenomenon we have
tempted to model is more complex than it appears here
particular, the backflow, which has so far been complet
neglected, is expected to play a role in the motion of coll
ing defects, especially when they come sufficiently close
one another. It should create a vorticity confined in a reg
closing up with the defects: its contribution to the dynam
should be an effective, possibly nonuniform, reduction
g1 , as suggested by the study of simpler cases~see@12# and
@13#!.

A naive way of accounting for this contribution would b
the following. First, we imagine that the closer the defec
the more the backflow favors their attraction. Second,
avoid computing the dissipation in the hydrodynamic flo
we simply assume that this amounts to an effective rotatio
viscosityg1 which decreases with the distanced between the
defects. Here, for example, we takeg1 proportional tod2:
Fig. 5 shows forw051° how the annihilation law would
depart from that with constant viscosity. Maybe this is t
crude an approximation, but it suggests how sensitive
annihilation of defects could be to the backflow.

FIG. 4. Graph of the dimensionless distanced against the di-
mensionless time to annihilationDt: the dashed line is forw0

50°, the dotted forw055°, and the continuous line forw0

510°.

FIG. 5. The continuous line shows the dimensionless dista
between the defects against the dimension annihilation time
w051° and a constantg1 , while the dashed line is plotted forg1

proportional to (d/d i)
2.
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