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Role of boundary conditions in the annihilation of nematic point defects
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We describe the effect of boundary conditions on the motion of point defects in a nematic liquid crystal
confined within a capillary tube. In particular, we show how even a small tilt of the director on the lateral
boundary could considerably affect the dynamics of defects. In our model the hydrodynamic flow induced by
the director rotation, often called tHmackflow is systematically neglected. We also suggest describing the
backflow by introducing phenomenologically an effective rotational viscosity depending on the distance be-
tween the defectsS1063-651X99)07102-0

PACS numbds): 61.30.Jf

I. INTRODUCTION [9] for a deterministic study anfil0] for a statistical onge
Thus, in[5] we succeeded in describing the coalescence of
In the classical continuum theory for nematic liquid crys-two point defects with opposite topological charges. We pre-
tals, which presumes the same degree of order to be preticted a finite cutoff distancd,, for the interaction between
scribed everywhere, point defects are mathematically modwo defects, which has recently been confirmed by several

eled as points of discontinuity for the director field numerical simulations based on an independent middg!
For homeotropic anchoringl. is slightly larger than the cyl-
n:B—<, (1 inder diameter.

Though this model captures the essence of a dynamical
which describes the average direction of the molecules in thphenomenon whose detailed description has long been lack-
region B occupied in space by a material sample. H8fe ing, recent observations suggest that it should be extended to
denotes the unit sphere. adhere better to a more complex reality. As reportedl#,

A point defect can be assignedt@pological chargeas there is enough experimental evidence to hold that when the
illustrated, for example, if1] and [2]: it roughly corre- distance between two defects with opposite topological
sponds to the number of times the director wraps around theharges exceeds., they approach each other at a constant
unit sphere when a whole region around the defect ispeed, thus revealing a constaapillary pressurethat acts
spanned. It is a common experience to see two defects witbn them before they start interacting. We showed 4]
opposite topological charges that attract each other as sodrow a slight misalignment of the nematic director at the
as the distance between them is sufficiently short. boundary of the cylinder can be responsible for such a pres-

The problem of modeling this dynamical process is notsure. If the anchoring fails to be homeotropic, the distahce
the easiest one. In principle, one should rely on the conalso depends on the actual anchoring, which in cylindrical
tinuum equations for both the flow and the director motionsymmetry is completely described by the anchoring polar
first proposed by Ericksen and Les(®ee[3] and[4]). Their  angle. Our model for the annihilation of two point defects
solution, however, is likely not to be found analytically when needs to be extended, since in general the boundary condi-
defects are present. tions are also likely to affect their relative motion when the

In [5] we proposed a different way of attacking this prob- defects come closer than the distante Besides this dis-
lem. In considering a point defect inside a capillary tube, wetance, the interaction force itself should also depend on the
renounced finding the exact minimizer for the energy func-anchoring angle.
tional describing the elastic distortion around a prescribed Here we illustrate a model for the interaction between two
point defect; rather, to mimic a singularity, we introduced adefects which move along the axis of a capillary tube, on
class of director fields depending on a single scalar functionwhose boundary the anchoring fails to be homeotropic. Such
Such fields are built by appropriatejgining together the a failure could possibly be induced by the filling process to
regular solutions escaped in opposite directions, found indean extent directly related to the filling velocity. Our develop-
pendently by Cladis and Kfean[6] and Meyer{7]. Luckily =~ ment parallels the one if5] for the homeotropic anchoring.
enough, within this class of director fields the elastic energye still renounce solving the complete equations of nema-
can be minimized explicitly: this leads to prototypes for bothtodynamics: in Sec. Il we introduce an appropriate class of
+1 and —1 point defects inside a capillary tube enforcing fields which mimic again both &1 and a— 1 point defect,
the homeotropic anchoring fan on the lateral boundary. while obeying the new boundary condition. We then mini-
These prototypes are sufficiently versatile to describe a varimize the elastic free energy within this special class, thus
ety of configurations with two or more defects alternating inobtaining analytically a family of director fields that model
topological charge. We did not confine our attention to stattwo point defects at every prescribed distance. In Sec. I, we
ics: by resorting to an appropriate dissipation principle, wecompute from the elastic free energy the interaction force
also arrived at a genuine dynamical model, where defects ateetween the defects. In Sec. IV we arrive at the equation that
considered like particles in a dynamical systésee[8] and  governs their motion, by only accounting for the energy dis-
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FIG. 1. (a) and(b) illustrate the fieldsn_ andn, , respectivelyfc) and(d) illustrate a+1 and a—1 defect, respectively.

sipated in the rearrangment of the director field. In fact, hereeffect. We imagine that in filling the capillary tube one of
the hydrodynamic flow induced by the rotation of the direc-these orientations is preferred to the other, possibly depend-
tor, often called théackflow is systematically neglected. In ing on the direction of filling.

Sec. V, we discuss this assumption. Since, as shown in both Consider now the problem of finding a fiefdas in Eq.

[12] and[13], the backflow can effectively be described by (2) which obeys Eq(3) and minimizes the elastic free en-
reducing the rotational viscosity in the director motion, weergy £ stored in the cylinder. In the one-constant approxima-
explore the consequences on the annihilation process of dion, this energy has a density per unit volume given by
effective rotational viscosity depending on the distance be-

tween the defects. We show that this indeed contributes to a "EW |2 4
finer analysis of the phenomenon. 72 '
II. MODEL EOR A POINT DEFECT whereK is a positive modulus. It is shown {i5] that, for

—m2<¢y<l2, there are exactly two stationary points for

In this section we give a brief description of the extendedg, which we calln_ andn, , obtained by inserting into Eq.
model referred to in the Introduction: we first describe a clasg2) the following expressions fop:
of fields which serve as prototypes for bothl and —1
defects in the director orientation, we then find the field that .
minimizes the elastic free energy within this class, and we ¢_(r,z)=arcsi
finally compute this minimum.

Hereafter we shall regard the capillary tube as a cylinde
with radius R and height M, and we will only consider

R2 copo— (1—singg)?r?
: )
R2 copy+ (1—singg)?r?

axisymmetric fieldsn inside it, which in cylindrical coordi- R2 —(1+si 2,2
nates (,9,z) can be written as (p+(I’,Z)=—aI’CSiF( C0S o (1 singo)r . (6
R2coSpy+ (1+singg)?r?
n(r,9,z)=cose(r,2)e +sine(r,z)e,, )

Figures 1a) and Xb) illustraten_ andn_ , respectively, for
where e, and e, are unit vectors in the coordinate frame ¢,>0. Simple computations show that. is the absolute
(& ,e5,8). We assume than is subject to the following minimizer for the elastic free energy, while more labor is

boundary condition: required (cf. [15]) to prove thatn, is a local minimizer.
Notice that for the homeotropic anchoring, baeth andn
_ ™ ™ reduce to one and the same field, which is often referred to as
¢(R2)=¢o, —5<¢0<7, @ the escaped fielgince it was discovered by Cladis and Kle

man|[6] and Meyer{7] in the early 1970s. As soon ag, is
which reduces to thénomeotropicanchoring whenp,=0.  different from zero, the equilibrium solution splits into two
Here we are interested in studying the coalescence of twdifferent fields, which store different elastic energies. They
defects with opposite topological charges when the boundargiso are qualitatively different: in one field the director es-
condition fails to be homeotropic. Actually, E(B) requires  capes in the same direction as the boundary data, while in the
the anglep to be constant alongand independent of time, a other field it escapes in the opposite direction, turning by an
condition which is compatible with theonical anchoring. angle larger thanr/2.
This is a degenerate anchoring, where only the angle be- We construct a class of fields that bear eitherhor a
tween the normal to the cylinder and the nematic director is- 1 defect, elaborating on the idea that such defects appear
prescribed. Combining this condition and the axisymmetrywhen a field that escapes upwards along the axis joins an-
presumed in Eq(2) allows n to take only two symmetric other which escapes downwardsvice versa This junction
orientations on the anchoring cone, which differ by the signis performed through two axisymmetric free surfaces, which
of ¢q in Eq. (3). Here we takep, to be positive. We shall we call thejoints, as illustrated in Fig. () for a +1 defect.
soon see that reversing the sign @f has essentially no Notice that forgo<<O the prototype for a1 defect would be
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FIG. 2. Sketch of the director field during the interaction between two defects of opposite topological charge.

described by Fig. (t) reversed upside down. Moreover, a field pointing upwards occurs above or below it. Hereafter,

—1 defect can also be modeled by joining together the fieldsve focus attention on a1 defect, since every result valid

in Figs. X&) and Xb), with the latter on top of the former for it can easily be rephrased for-al defect.

[see Fig. 1d)]. Let h; andh, be the unknown heights of the joints and let
In Fig. 1(c) an escaped field is rescaled on each sectiorﬂ:rl(z) and r=r,(z) be the unknown functions that de-

orthogonal to the axis of the cylinder, so thet o on the  geripe their longitudinal section. We call andn, the di-

joints; moreover, in the peripheral region between the jointgacior fields just described in words, which in Figcilare

and the lateral boundary of the tube, the director field iSsnown above and below the defect. They are determined
constant on each section with const@ntThe free surfaces respectively, by giving the functiop in Eq. (2) the follow- '

meet at a point along the axis, which is a singular point foring forms:
n: itis either a+1 or a—1 defect depending on whether the '

’_( r2cog go— (1—singg)?r?

), 0=<r=r4(2),

@i(r,2)= rfcos g+ (1—singg)?r? (7)
®o, ri(z)srsR,
1+singg)?ré—r2co
r( (2 %0) 2 2@(2)), 0=<r=ry(2),
0,(r,2)= r5cos @o+ (1+singg)r (8)
©o, r2(2)$r$R.
|
We do not dwell further on the mathematical details of this 1+singg _ _
model, which could easily be retraced[it6], where another  A(¢o) ==m{2 In2—1—21In(1+singg)+sineg}.
application is considered. We only note that the problem of 0 (10)

finding the joints with the minimum energy has a unique
solution, provided that their heights obey the following in-

equalities: IIl. INTERACTION FORCE

Our purpose in this section is to describe how two defects

h.< VA(@o) ™ d ho< VA(— o) with opposite topological charges interact. Consider a cylin-
1™ coseg R an 2= COSgq R, ©) der with a prescribed anchoring anglg, on its lateral

boundary and with heightk2 sufficiently large to accommo-
date two defects together with their joints. Let two defects
where with topological charges-1 and—1 be on the axis of the
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cylinder, and let the fielah, described in Sec. Il be in the AE
region between them. Since by the second inequalit{9jn
the maximum height of the inner joints in Fig. 2 is bounded,
the distortions associated with the defects would not interfere
with one another as long as the distarccdetween these
remains larger than

2.5

15

VA(— T
d oo AT (11) 1
COS¢g
Thus, a strip with the equilibrium field, lies between the 05

inner joints. Bringing the defects closer to one another then
implies rearranging the director field so that this strip is
shortened: the two joints come closer, rigidly sliding along
the tube, while the regions away from the defects, where AE
=n_, become larger. As shown iri4], no interaction be-
tween the defects is responsible for this motion: it results
from two independent motions, each due to a constant force
When d<d. the height of both inner joints in Fig. 2 is 3
d/2. The equilibrium distortion fon is shown in Fig. Zc).
To compute the elastic free energy stored in the whole cyl-
inder, we first evaluate the energy of the inner joints, which
enclose a rescaled field, , then the energy of the outer
joints, which embrace a rescaled fiald , and finally the
energy of the regions near the ends of the cylinder, where
need not be rescaled. Details of such computations are give
in [15]; here we only report the final expression for the total
elastic free energy as a function ofd: g 1 e 5 8

05 1 1.5 2 8

d+&(0) FIG. 3. The graph of the dimensionless functib& against the
dimensionless distance between the def@dbr ¢o=1°, 2nd ¢q
=5°, respectively.

d
&d)= ’lTK[4 singg+ cog goo( 1-Ing-
C

for d=d., (12
The graph of the dimensionless functiakE:=(E(d)

where —&(0))/ KR against the dimensionless distance between
R the defectss:=d/2R is plotted in Figs. and 3b) for
£(0)=2mK{coseoVA(¢o) TR+ HB(0)} =1° andgy=5° reéspel?ctively.I - & bfor e
with

IV. DYNAMICS

B(¢o):=2(1=sing). ] ] }
Here we derive the equation of motion that governs the
The forcef(d) acting on each defect is defined by coalescence between two defects with opposite topological
, charges. The classical theory for nematic flow has recently
f(d):=—&"(d), (13 been rebuilt by Lesli¢16] on a dissipation principle, which
takes the following form when the hydrodynamic flow is

where a prime now denotes differentiation with resped.to -
negligible:

It readily follows for Eq.(12) that

) d E+W=0; (15
f(d)y=—nK 4SIn(po—0052(po|nd— for d=d,.
¢ (14)  here a superimposed dot denotes the time derivativeVand
represents the energy dissipated by the viscous torques act-
A glance at Eq(11) would suffice to remind the reader that ing on the directom. Since the molecular inertia is negli-
hered, depends onpg: it is a decreasing function defined gible, no account is taken in E¢L5) for the kinetic energy
for 0= ¢py=</2, which atgy=0 equals the critical distance involved in the motion of the director field.
for the homeotropic anchoring, slightly above R,2and In applying Eq.(15) to the present case, we assume that
tends approximately to 1R7for ¢o— /2. This limiting case  the configurations traversed by the director field during the
deserves notice: the director fietdtends indeed to become coalescence of the defects are the equilibrium configurations
uniform around the defects, apart from a whole singulardescribed above. Thus, once the dissipation functiris
straight string linking them, while the joints fade away andknown as a function of the distaneckbetween the defects
the tensionin the string approaches#X. We refer the and its time derivative, Eq15) becomes a first-order differ-
reader tg15] for further details on this. ential equation fod. We skip again the technical aspects of
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this computation, referring the reader[ttb], whereV was
computed for a setting that formally differs from this only by
the sign ofeq: here the appropriate formula fo# is

1
W= 5 m32y,R coseo) MA(— g

d .
> )d_c +VA(o) [ d?

for d<d,, (16

where y;>0 is the rotational viscositycf., e.g., Chap. 5 of

[17]) and\=1.445 is a dimensionless parameter which has

been computed numerically, precisely ag%h

We are now in a position to write the equation of motion
for the defects. Inserting Eg€l2) and(16) into Eq.(15), we
arrive at

4 singy—cog g In
dc

.d_

SR

1

- 5
\/;COSQDO \/A(_QDO))\d_+ A(eo)
Cc

for d<d., (17)
where 7:=y;R?/K is a characteristic time, which also de-
pends on the capillary radius. We can obtain from &q)
the timet as a function of:

t(d)=t,— ==

2R

<J;

\/_C032¢o[\/A( <P0)7\ +\/A(<P0)

dx,

4 singpy— cog e In
de

d<d,, (18

wheret,:=t(0) represents thannihilation time which de-
pends on the initial distanag :

- dc\/;COS‘z(Po( VA(— <Po))\ +\/A(<Po)

ta:ﬁ o

dx

4 singg—coS g In
de

f [VA(— o)+ VA(¢0)]
4 tangg

(di —do). (19

We obtain from Eq(18) the graph of the dimensionless

distance 8 against the dimensionless time to annihilation >

(ta—t)/7. In Fig. 4 this graph is drawn for both,=1° and
¢@o=5° together with the one borrowed frdri], which cor-
responds to the homeotropic anchoringy€0°). A dashed

line illustrates the linear decay of the distance in time, which

lasts until the interaction starts, that is, as longlaxceeds
the critical distanced.. We also see from Fig. 4 that,
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FIG. 4. Graph of the dimensionless distant@gainst the di-
mensionless time to annihilatioAt: the dashed line is fokg
=0°, the dotted forgy=5°, and the continuous line fop,
=10°.

V. DISCUSSION

One might well argue that the phenomenon we have at-
tempted to model is more complex than it appears here. In
particular, the backflow, which has so far been completely
neglected, is expected to play a role in the motion of collid-
ing defects, especially when they come sufficiently close to
one another. It should create a vorticity confined in a region
closing up with the defects: its contribution to the dynamics
should be an effective, possibly nonuniform, reduction of
v1, as suggested by the study of simpler caseg[12] and
[13]).

A naive way of accounting for this contribution would be
the following. First, we imagine that the closer the defects,
the more the backflow favors their attraction. Second, to
avoid computing the dissipation in the hydrodynamic flow,
we simply assume that this amounts to an effective rotational
viscosity y; which decreases with the distantbetween the
defects. Here, for example, we takg proportional tod?:

Fig. 5 shows fore,=1° how the annihilation law would
depart from that with constant viscosity. Maybe this is too
crude an approximation, but it suggests how sensitive the
annihilation of defects could be to the backflow.

1 2 3 4 5 At

FIG. 5. The continuous line shows the dimensionless distance
between the defects against the dimension annihilation time for

depends onp, and that the phenomenon becomes faster ag,=1° and a constany;, while the dashed line is plotted for,

this angle increases.

proportional to ¢/6,)2.
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